
Humphries	Lab	Policy	on	Code	Development	
V1.1	8/10/2020	
	
Our	research	is	based	on	code,	lots	and	lots	of	code.	It	is	thus	in	our	interests	to	
adopt	good	coding	practices,	for	many	reasons	including:		

- we	can	have	confidence	in	our	results	and	so	also	in	our	published	work	
- others	can	use	our	code,	to	check	our	results	or	extend	our	approach	
- we	can	re-use	our	own	code,	and	understand	what	it	does	6	months	after	

it	was	written	
	
This	policy	lays	out	how	the	lab	should	strive	to	develop	its	code.	The	lab	manual	
covers	our	policy	on	how	the	lab	shares	its	code.	
	
A	key	idea	in	laying	out	this	policy	is	that	research	code	is	not	equivalent	to	
software	code.	Research	code	is	often	exploratory,	as	it	is	implementing	ideas	for	
analysis	and	models.	The	author(s)	often	do	not	know	fully	what	the	code	will	do	
in	advance.	Much	research	code	is	written	once	and	abandoned.	While	there	are	
well-developed	ideas	for	good	coding	practice	for	software	code,	these	ideas	are	
not	so	well	developed	for	research	code.	Hence	this	policy	is	less	prescriptive	
than	it	would	be	for	software	code.	

Style	
All	elements	of	the	code	policy	are	made	easier	by	human-readable	code.	This	
means:	

- use	a	consistent,	explicit,	readable	naming	convention	for	variables	and	
functions	

- it	is	common	to	use	either	underscore	(“add_N_to_X”,	“plot_an_elephant”)	
or	camel-case	(“addNtoX”,	“PlotAnElephant”).	Pick	one	convention,	and	
use	it	consistently.	

Version	control	
Version	control	software	(e.g.	Git)	is	useful	for	managing	complex	code	projects;	
separately,	the	online	cloud	hosting	of	the	version	control	repository	(e.g.	on	
GitHub)	allows	for	easy	sharing	of	the	code		

- any	multi-authored	code	base	will	use	version	control	by	default	(see	e.g.	
the	“Network	Noise	Rejection”	work),	to	manage	the	contributions	
successfully	

- any	project	whose	code	is	intended	to	be	“product”,	e.g.	a	package	to	
compute	a	metric	or	algorithm(s),	should	use	version	control	from	the	
outset.	

- Otherwise,	single-authored	research	code	is	encouraged	to	use	version	
control	at	an	appropriate	point	in	the	project.		

Refactoring	
Research	code	often	takes	the	form	of	long	scripts,	notebooks	etc	because	of	its	
exploratory	nature.	If	that	code	becomes	central	to	a	paper’s	results,	refactor	
code	into	functions	for	testing	and	review.	Better	yet,	plan	to	write	functions	as	
the	code	is	developed.	



	
Code	for	generating	figures	often	contains	further	processing	of	data	within	the	
plotting	code	–	for	example,	rescaling	the	data	by	subtracting	a	mean.	Figure	
code	should	be	refactored	to	include	only	visualisation	code	and	plotting	
functions,	working	on	final	versions	of	data.	

Testing	
Does	the	code	do	what	you	think	it	does?	Code	has	errors.	Code	from	this	lab	has	
had	numerous	errors,	of	which	we	have	caught	many,	but	not	all.			
	
Testing	research	code	–	graphs.	Our	first	test	of	most	of	our	code	is	to	graph	the	
results	of	our	analysis	or	models	and	see	if	they	are	what	we	expected,	or	if	they	
make	sense.	
	
Testing	research	code	–	synthetic	data*.	If	doing	time-series	analysis,	a	useful	
check	is	to	test	analysis	code	on	artificially	generated	time-series	with	known	
properties.	
	
Unit	testing*	–	for	functions,	write	code	that	checks	the	function	returns	the	
correct	results;	re-run	unit	test	after	each	change	to	the	function.		
	
*note	the	necessity	in	these	cases	of	the	code	to	generate	the	tests	also	being	
correct.	Testing	alone	is	not	expected	to	catch	all	errors.	

Code	review	
Many	errors	in	research	code	are	not	bugs,	but	conceptual	errors.	For	example,	
the	incorrect	or	missing	scaling	of	a	time-series,	or	the	wrong	translation	of	an	
equation	into	code.	
	
We	will	use	code	review	to	try	to	catch	these	errors.	Code	review	is	the	process	
of	having	code	reviewed	by	someone	who	is	not	the	author.	Again,	most	code	
review	advice	is	about	software	code,	not	research	code.			
	
Our	approach	will	take	this	form:	

- the	author	will	nominate	a	section	of	their	code	to	review,	typically	100-
200	lines	long	(not	including	whitespace	and	comments);	they	should	also	
point	to	the	location	of	crucial	code	those	lines	call.		

- The	reviewed	code	should	contain	work	key	to	a	result	or	model,	such	as	
the	processing	or	transformation	of	time-series	data	or	other	data,	the	
implementation	of	an	algorithm,	or	the	implementation	of	equations	in	
code.	The	code	for	review	will	likely	be	an	excerpt	from	a	longer	piece	of	
code	–	hence	the	presentation	by	the	author	is	needed	to	give	the	context	
of	the	code.		

- The	author	will	send	the	code	or	links	to	it	at	least	3	working	days	before	
the	review	meeting	(inclusive	of	the	meeting	day),	for	reviewers	to	look	at	

- The	author	should	send	any	tutorials,	demos,	or	tests	of	that	code,	
including	graphs,	to	help	the	reviewers	understand	it	

- In	the	review	meeting,	the	author	will	present	the	code	to	the	reviewer(s),	
talking	them	through	the	operations	of	each	line	or	section	



- The	presentation	will	ideally	be	of	the	live	code;	but	slide-based	
presentation	of	code	excerpts	is	allowed	

- The	reviewers’	task	is	to	ask	constructive	questions	to	clarify	the	code’s	
operation,	optionally	they	may	make	constructive	comments	on	the	
code’s	form	itself	(functions,	variable	names,	initialisation	etc)	

- Review	meetings	should	strive	to	be	~30	minutes	long	
	

Frequency	of	review	meetings	
Code	review	is	separate	from	the	presentation	of	the	scientific	insights	and	
directions	of	our	research	(data	clubs)	and	the	discussion	of	new	science	(journal	
clubs).	
	
We	will	schedule	a	regular	afternoon	tea-break	meeting	(Monday	at	3pm	in	each	
journal	club	week).		

- Each	tea-break	has	a	named	person:		
o if	they	have	code	to	review,	they	can	use	that	time	to	present	their	

code	review;		
o if	they	have	no	code	to	review,	they	can	introduce	something	to	the	

lab	–	a	technique	(an	algorithm,	an	analysis	approach,	a	coding	
tool,	etc),	or	paper(s)	of	interest,	or	a	line	of	research	they’re	
digging	into	etc	etc.	This	is	not	a	formal	presentation!	

- Lab	members	can	ask	to	present	a	code	review	in	these	tea-breaks	at	any	
time,	replacing	the	scheduled	person	

- Ad	hoc:	lab	members	can	ask	another	member	of	the	lab	for	pair	review	of	
code	outside	these	presentation	meetings	

	

Who	will	review	
Unless	otherwise	specified,	it	is	expected	that	all	lab	members	who	are	available	
for	a	code	review	meeting	will	attend	the	presentation,	and	are	allowed	to	offer	
comments.	It	is	recognised	that	not	everyone	will	necessarily	know	the	coding	
language	being	used.	


